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Abstract. Input shaping is an effective means for suppressing motion-induced residual vibration of lightly damped
structures. Here, to demonstrate the ideas of various input shaping schemes for continuous structures, the model
system of a cantilever beam, whose base is to be displaced by a prescribed distance, is considered. The cantile-
ver-beam motion is modeled by the damped Bernoulli-Euler beam equation, and is then decomposed into normal
vibration modes. For the particular system set up here, the modal equations of motion are linear and uncoupled,
and consequently are integrated analytically. It is then shown that, by completing the cantilever base movement
in a series of properly calculated steps (i.e., by shaping the input command of the dynamical system), so as to
annihilate the dominant vibration modes through destructive interference, the overall induced vibration of the can-
tilever can be significantly suppressed. In particular, the “zero-vibration” (ZV) and “zero-vibration-and-derivative”
(ZVD) input shaping schemes previously proposed for discrete systems are adapted and applied to the continuous
beam here. The theoretical results are also supported by experiments.
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1. Introduction

The performance of precision machines largely depends on the damping capability of the sys-
tem in question. This makes damping enhancement an important practical issue in the design
of high performance mechanical structures. Basically, the damping capability of a mechani-
cal system can be enhanced by passive and/or active means. In the passive approach, system
damping is increased by deploying discrete external dampers such as dashpots, or by inte-
grating a viscoelastic material with a structure member so that the member becomes a “shear
damper” [1, Chapter 3]. On the other hand, in the active approach, structural damping can be
enhanced by exploiting adaptive materials (e.g., piezoelectric materials) and feedback control
[1, Chapter 6].

A third approach to reducing motion-induced residual vibration of elastic structures is
to properly administer the input command of the system, i.e., to make use of “input shap-
ing”. The idea of shaping the system input to improve its performance has been proposed
for decades. Especially during the past ten years or so, extensive research of input shaping
has been conducted in robotics and flexible arm control [2–5]. In such studies, the system
dynamics typically is modeled by equivalent linearized equations of motion having single or
low degrees of freedom; and input-shaping schemes resulting in “zero vibration” (ZV) and
“zero vibration and derivative” (ZVD) are developed based on such linear discrete models.
Briefly, the ZV scheme decomposes the overall system input into two intermediate steps, each
of which is applied at a properly calculated instant, so that the partial system responses
to each of the steps interact destructively, thereby suppressing the residual vibration of the
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system. When the overall system input is decomposed into three intermediate steps in the
ZVD scheme, both the residual vibration amplitude and the derivative of the vibration ampli-
tude with respect to timing error can be made zero simultaneously. Clearly, the ZVD scheme
therefore is less sensitive to timing error (and hence generally is more robust in real applica-
tions) than the ZV scheme.

In other research areas and applications, such as wave propagation and microelectrome-
chanical systems (MEMS), some work has also been done attempting to improve the system
performance by modifying the system input [6–8]. In such studies, the structures or wave sys-
tems are inherently continuous and nonlinear, so that the existing input-shaping schemes may
not always produce satisfactory results. Therefore, to further our understanding and the appli-
cability of input-shaping, it is necessary to examine the performance of various input-shaping
schemes on nonlinear continuous systems.

To that end, we have carried out a series of investigations along two major directions.
First, to focus on the effects of system nonlinearities on the performance of input-shaping
schemes, Yang et al. [9] considered nonlinear systems of single degree of freedom (SDOF).
Strictly speaking, for nonlinear SDOF systems, the idea of suppressing residual vibration
by exploiting linear destructive interference is no longer applicable. Of course, weak nonlin-
earities may be viewed as structural perturbations to the system dynamics, and the existing
input-shaping schemes (e.g., the aforementioned ZV and ZVD schemes) are expected to work
reasonably satisfactorily on such systems. For highly nonlinear systems, however, the design
methodology of input-shaping schemes has to be modified. Yang et al. [9] thus devised an
energy (phase plane) approach to study input shaping for highly nonlinear systems. In that
work, input shaping was interpreted from an energy viewpoint, and an efficient methodology
of input-shaping design for nonlinear SDOF systems was proposed on the basis of an energy
balance. The energy approach has also been successfully applied to design input shapers for
an electromagnetically actuated nonlinear structure [10].

Along the second direction, we have also studied input shaping for linear continuous sys-
tems. This paper presents some of our analytical and experimental findings in such studies,
and thus complements the aforementioned works [9,10]. Specifically, we shall demonstrate
here the design methodology of input-shaping schemes for linear continuous structures. In
particular, the model system of a cantilever beam is considered, whose base is to be displaced
by a prescribed distance. As the cantilever is deformable, residual beam vibration generally
would be excited by its base movement. The residual vibration would then persist for some
time after the cantilever base reaches its destination position, until internal and/or external
dissipative mechanisms eventually consume all the kinetic energy associated with the residual
vibration. Residual vibration usually is undesirable, as it would deteriorate the performance of
precision machines, for example. Although slower base movement generally would excite less
residual vibration, it also has the disadvantage of lengthening the time required to complete
the task. The objective here is therefore to administer the cantilever-base movement in a way
that minimizes the residual beam vibration without much sacrifice of the task time.

Instead of using lumped SDOF (or low-DOF) models that somewhat over-simplify the sys-
tem dynamics, here the beam motion will be modeled by the damped Bernoulli-Euler beam
equation [11, Section 8.1]. The complete mathematical formulation of the problem is pre-
sented in Section 2. It will be shown that, for the particular system setup considered here,
the beam motion can be decomposed into normal vibration modes of the cantilever, and the
resulting modal equations of motion are uncoupled. We are thus able to obtain closed-form
expressions for the modal responses. Using the closed-form modal responses, we shall then
proceed to discuss the ideas of input-shaping for continuous systems in Section 3. Specifically,



Residual vibration suppression of a cantilever beam by input shaping 3

a class of input shaping schemes equivalent to the ZV and ZVD schemes for discrete systems
are used to suppress the dominant vibration modes, thereby significantly reducing the overall
residual vibration of the cantilever beam. In Section 4, we shall briefly discuss some experi-
mental results supporting the theoretical calculations. Also, to conclude this paper, a number
of concluding remarks will be given in Section 5.

2. Formulation and modal decomposition of beam motion

2.1. Bernoulli-Euler beam model

Consider a linearly elastic cantilever beam of length L; the cross-section of the cantilever has
an area A and moment of inertia I , both of which are taken to be constant here. Also, the
mass density and Young’s modulus of the homogeneous beam material will be denoted by ρ

and E, respectively. Suppose, in addition, that an actuator is deployed to displace the base
of the cantilever (X=0, X being the longitudinal coordinate of the cantilever) through a pre-
scribed distance H .

Here the cantilever is modeled as a Bernoulli-Euler beam [11, Section 8.1]. Meanwhile,
to incorporate a simple form of energy dissipation, the cantilever motion is supposed to be
restrained by a small distributed viscous damping of strength (viscous force/velocity) B per
unit longitudinal length of the beam. Accordingly, the lateral beam deflection Y (X,T ) – here
assumed to be ‘small’ – is governed by the linear, damped beam equation

ρAYT T +B YT +EI YXXXX =0 (0<X <L),

where T is the time variable, and the subscripts denote partial differentiations.
To bring out dynamical similarity, hereafter we shall use dimensionless variables:

t =T/T0, x =X/L, y =Y/H,

where T0 is a characteristic time scale to be specified below. Accordingly, the dimensionless
linear equation governing the cantilever motion reads

µ2ytt +bµyt +yxxxx =0 (0<x <1), (1)

where

µ2 = ρAL4

EIT 2
and b= BL2

√
ρAEI

(2)

are the dimensionless inertia parameter and damping coefficient, respectively. Meanwhile, the
boundary conditions are written as

y =y0(t), yx =0 (x =0), (3a)

yxx =yxxx =0 (x =1). (3b)

To be consistent with the normalization scheme described above, the prescribed cantilever
base movement y0(t) varies here from zero at t =0 to unity at a later instant.

2.2. Normal-mode expansion

Having formulated the mathematical model for the cantilever beam motion due to prescribed
base movement, we now proceed to decompose the beam motion into normal vibration
modes of the cantilever. As it turns out, the modal equations of motion are uncoupled for
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Figure 1. The first three mode shapes of a cantilever beam.

the present system setup, and hence the modal responses can be calculated analytically. This
proves convenient for our discussion of input-shaping schemes in the next section.

Note first that free vibration of an undamped cantilever (corresponding to the case y0(t)=
0 = b in the above formulation) has the normal modes yn = φn(x) exp(iωnt) with the mode
shapes [11, Section 8.1]

φn(x)=αn{(sin βn + sinh βn)(cosh βnx − cosβnx)

−(cosβn + cosh βn)(sinh βnx − sin βnx)} (n=1,2,3, . . . ), (4)

and the corresponding eigenvalues βn =√
µωn (ωn being the dimensionless natural frequencies

of the cantilever) are the roots of the characteristic equation

cosβn cosh βn =−1. (5)

Here the eigenvalues are numbered in increasing order, so that 0<β1 <β2 <β3 < · · · . Also, the
normalization constants αn are chosen to be

αn = (sin βn + sinh βn)
−1, (6)

so that the normal modes φn(x) (n=1,2,3, . . . ) form an orthonormal basis, i.e.,

∫ 1

0
φmφndx = δmn, (7)

where δmn is Kronecker’s delta.
Figure 1 plots the first three mode shapes; note that, as can be shown, φn(1)=2(−1)n−1.

Also, since cosh βn →∞ as n→∞, we deduce from (5) that cosβn →0 accordingly, and hence

βn ∼ (n−1/2)π (n→∞). (8)

The eigenvalues corresponding to the first three mode shapes are calculated by solving the
algebraic Equation (5) numerically, and the results are also listed in Figure 1. It is interesting
to note that, even for a mode index as small as n=3, the corresponding eigenvalue (divided
by π for convenience, i.e., β3/π ) can be estimated from the above asymptotic formula accu-
rate to the third decimal place.
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Now, the characteristic time scale T0 appearing in the definition of the inertia parameter
µ, Equation (2), may be chosen to be the period of the first vibration mode of the cantilever.
Accordingly, by definition the dimensionless angular frequency of the first mode

ω1 =2π; hence µ=β2
1/ω1 =0 ·560.

Next we expand the beam displacement in terms of the mode shapes:

y(x, t)=
∞∑

n=1

an(t)φn(x), (9)

where an (n=1,2,3, . . . ) are the modal amplitudes. Substituting the normal mode expansion
(9) in (1) yields

µ2ytt +bµyt =
∞∑

n=1

(
µ2 d2an

dt2
+bµ

dan

dt

)
φn =−yxxxx,

and, upon using the orthogonality relation (7), we obtain

µ2 d2an

dt2
+bµ

dan

dt
=−

∫ 1

0
φnyxxxxdx (n=1,2,3, . . . ).

Then, integrating the right-hand side of the above equations by parts repeatedly, using the
boundary conditions (3) and the fact that φnxxxx =β4

nφn =µ2ω2
nφn, we may derive the evolu-

tion equations of the modal amplitudes as follows

µ2 d2an

dt2
+bµ

dan

dt
+µ2ω2

nan =νny0(t) (n=1,2,3, . . . ), (10)

where the parameters

νn =−φnxxx(0)=2αnβ
3
n(cosβn + cosh βn) (11)

may be interpreted as the participation coefficients of the system input (i.e., the base move-
ment y0(t)) for each of the normal modes. Note also that, in view of the asymptotic eigen-
value distribution (8), and using (6), it can be deduced from (11) that νn ∼2β3

n (n→∞).
Unlike the lumped SDOF models widely used in previous studies, here the beam motion

has been systematically decomposed into an infinite number of modes, and thus essentially
has infinite degrees of freedom by contrast. Moreover, as it turns out, due to the simplicity
of the current system setup, the normal modes are uncoupled, and we can proceed to solve
the modal equations of motion (10) analytically. Specifically, suppose that the cantilever is
initially at rest and its base undergoes a unit-step movement y0(t)=H(t), where H(t) is the
Heaviside’s step function; the modal responses are then found to be

an(t)=νnβ
−4
n

{
1− e−bt/2µ

(
cosω′

nt + b

2µω′
n

sin ω′
nt

)}
(n=1,2,3, . . . ), (12)

where ω′
n =ωn(1−b2/4β2

n)1/2 are the natural frequencies of the damped cantilever. Also, dur-
ing the reviewing process of this paper, an anonymous reviewer kindly pointed out that there
is an elegant expression for the amplitude factors νnβ

−4
n appearing in (12):

νnβ
−4
n = 2

βn

· (−1)n+1 sin βn

1+ (−1)n cosβn

.
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In the next section, we shall discuss input shaping design for continuous mechanical struc-
tures based on the unit step modal responses (12). It is worth mentioning, however, that for
more sophisticated (and perhaps more realistic, too!) system setups with payload and/or dis-
sipative mechanisms other than the distributed viscous damping considered here, the normal
modes generally would then be coupled. As a result, the modal responses will be affected by
the interactions of the normal modes, and the analysis naturally will be more intricate. That,
however, is beyond the scope of this paper, and will not be further pursued in this article.

3. Input-shaping schemes

3.1. ZV shaper: undamped systems

To gain some insight into input shaping, let us first consider the special case in which dissi-
pative effects are negligible. Accordingly, the damping coefficient b=0 in (12), and the modal
responses to a unit-step input simplify to

an(t)=νnβ
−4
n (1− cosωnt) (n=1,2,3, . . . ). (13)

It is seen that the modal amplitudes an oscillate about their mean values νnβ
−4
n , and it can

be shown that
∑∞

n=1 νnβ
−4
n φn(1)= 1, so that the cantilever tip oscillates about its target des-

tination y = 1. Also, from (13) we deduce that the residual vibration of the n-th mode has
an angular frequency of ωn and amplitude νnβ

−4
n . Moreover, from the asymptotic eigenvalue

distribution (8) and the parameter definition (11), it can be readily shown that the amplitudes
of residual vibration are given by

νnβ
−4
n ∼ 2

βn

∼ 2
nπ

(n→∞),

and decrease monotonically with the modal index n.
Suppose now that we wish to suppress one of the vibration modes to reduce the overall

residual vibration. (A natural choice would be the first mode, since it has the largest ampli-
tude among all modes.) One way to do that is to apply the system input in two steps of equal
stroke, so that mathematically the input command reads

y0(t)= 1
2
{H(t)+H(t − τ)}, (14)

where τ is the time lag of the second step with respect to the first. The modal responses due
to the first half-step input are simply one half of those given by (13). Furthermore, since the
modal evolution Equations (10) are autonomous and thus are invariant with respect to time
shift, the modal responses due to the second half-step input can be readily obtained by shift-
ing the temporal variable in the first half-step responses by τ . In addition, due to the linear-
ity of the current setup, we can simply superimpose the above two partial responses to obtain
the overall modal responses, and the result for t >τ (i.e., after the cantilever base reaches its
destination) is

an(t)=νnβ
−4
n

{
1− 1

2
(1+ cosωnτ) cosωnt − 1

2
sin ωnτ sin ωnt

}
(n=1,2,3, . . . ). (15)

We thus see that the residual vibration of the n-th mode now has a cosine component of ampli-
tude νnβ

−4
n (1 + cosωnτ)/2 and a sine component of amplitude νnβ

−4
n (sin ωnτ)/2. The overall
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Figure 2. Residual tip vibration of an undamped cantilever undergoing (a) a unit-step base movement y0 = H(t),
and (b) a two-step base movement y0 ={H(t)+H(t −1/2)}, respectively. Solid curves: tip position as a function of
time; dot-dashed curves: contributions of the first vibration mode.

modal amplitude therefore is νnβ
−4
n | cos(ωnτ/2)|, and the n-th residual vibration mode is com-

pletely suppressed when the time lag between the two half-steps takes one of the values below:

τ = (m+1/2)τn (m=0,1,2, . . . ), (16)

where τn =2π/ωn is the dimensionless period of the n-th vibration mode. Recall that we have chosen
the characteristic time scale T0 to be the period of the first mode, hence τ1 =1 by definition.

Two-step input-shaping schemes of the form (14) satisfying the zero-vibration (ZV) conditions
(16) are referred to as ZV shapers in Singhose’s doctoral dissertation [5]. It is clear from the ZV con-
ditions that physically we will be exploiting linear destructive interference between the two partial
responses to suppress the residual vibration of the n-th mode. Note that, as a larger value of time
lag τ implies a longer time for the cantilever base to settle in its destination, it would be preferable
to pick m = 0 from the ZV conditions (16). Meanwhile, as noted above, since the first residual-
vibration mode typically has the largest amplitude, it would be the natural target to be suppressed
in a first attempt of residual-vibration reduction. However, it should be emphasized that complete
suppression of one individual mode generally would not completely suppress the infinitely many
other modes simultaneously.

To demonstrate these ideas, and the effectiveness of input shaping in residual-vibration
reduction, residual tip vibration of an undamped cantilever excited by its base movement is
computed by summing up ‘all’ the modal contributions, and the results are shown in Figure 2.
(The total number of vibration modes is chosen such that a further increase of the mode
number does not alter the results in Figure 2 appreciably. In practice, however, the temporal
resolution of tip-position measurements generally is limited by the instruments being used.)
Meanwhile, for clarity of presentation, the contributions of the first vibration mode are also
depicted in Figure 2. At any rate, it is seen in Figure 2(a) that, when the cantilever-base move-
ment is completed in one step, the instantaneous amplitude of the residual tip vibration can
be as large as four times the base displacement. However, as explained above, in order to sup-
press the first residual-vibration mode, and thereby reduce the tip vibration to some extent,
the base movement may be split into two steps of equal stroke where the second step lags
the first by τ = 1/2. The residual tip vibration due to the presence of all the other modes is
shown in Figure 2(b), and we see that the maximum instantaneous tip-vibration amplitude is
now reduced by a factor of two.

3.2. ZV shaper: damped systems

Practical mechanical systems more or less are subject to internal and/or external dissipative
mechanisms, so here we shall briefly discuss how the above ideas of input shaping should be
modified when applied to dissipative mechanical systems.
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Again, we may make use of destructive interference and split the base movement into
two steps to suppress the n-th residual vibration mode. However, as the modal amplitudes of
residual vibration are continuously attenuating, the first partial step must now have a larger
stroke than that of the second to compensate for the amplitude attenuation. To be more spe-
cific, suppose that the second partial step lags the first by a time τ ; then, in view of (12),
the first partial step has to be exp(bτ/2µ) times larger than the second, so that at the very
instant the second step is applied, the modal amplitudes of the residual vibration thus excited
would attenuate to be equal to those excited by the second partial step. Accordingly, requir-
ing that the strokes of the two partial steps add up to unity, the cantilever base movement is
calculated to be

y0(t)= 1
2

sech
bτ

4µ

{
exp

(
bτ

4µ

)
H(t)+ exp

(
− bτ

4µ

)
H(t − τ)

}
. (17)

Now, making use of the linearity and time-shift invariance of the modal evolution Equa-
tions (10), the modal responses of a damped cantilever due to the two-step base movement
described by (17) can be constructed from the damped unit-step responses (12). The results
for t >τ are

an(t)=νnβ
−4
n

{
1− ebτ/4µ

2
sech

bτ

4µ
e−bt/2µ ×

[(
1+ cosω′

nτ − b

2µω′
n

sin ω′
nτ

)
cosω′

nt

+
(

sin ω′
nτ + b

2µω′
n

(1+ cosω′
nτ )

)
sin ω′

nt

]}
(n=1,2,3, . . . ). (18)

Hence the overall modal amplitudes of the residual vibration are calculated (by combining the
sine and cosine components) to be

An(t; τ)=νnβ
−4
n

[
1+

(
b

2µω′
n

)2
]1/2

ebτ/4µ sech
bτ

4µ

∣∣∣∣cos
ω′

nτ

2

∣∣∣∣ e−bt/2µ.

Of course, under the action of viscous damping, these amplitudes decay with time.
We may define the ‘vibration reduction factors’ to be the ratios of the modal amplitudes

with input shaping to those without:

Rn,2step(τ ;b)≡ An(t; τ)

An(t;0)
= ebτ/4µ sech

bτ

4µ

∣∣∣∣cos
ω′

nτ

2

∣∣∣∣ (n=1,2,3, . . . ). (19)

(Incidentally, the time-attenuation factor e−bt/2µ that appears in the modal amplitudes An is
cancelled out in the reduction factors Rn,2step.) We thus see that, if the n-th residual vibration
mode is to be suppressed, the time lag between the two partial steps may be chosen to be

τ = (m+1/2)τ ′
n (m=0,1,2, . . . ), (20)

where τ ′
n =2π/ω′

n. Note also that (20) generalizes the undamped ZV conditions (16) by replac-
ing the undamped natural periods τn with the damped periods τ ′

n.
As an example, taking b=0·05 for the dimensionless damping coefficient, the residual tip

vibration of a damped cantilever excited by its base movement is computed by summing up
the modal contributions. The residual tip vibration excited by a unit-step base movement is
shown in Figure 3(a). It is seen that initially the instantaneous tip-vibration amplitude reaches
about three times the cantilever-base displacement, but the tip vibration is then slowly atten-
uated by the weak damping imposed here. In an attempt to reduce the residual tip vibration,
the base movement is split into two steps described mathematically by (17), with τ = τ ′

1/2 to
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Figure 3. Residual tip vibration of a damped cantilever (taking b=0·05) undergoing (a) a unit-step base movement
and (b) a two-step base movement described by (17) with τ =τ ′

1/2, respectively. Solid curves: temporal variations of
the tip position; dot-dashed curves: contributions of the first vibration mode.

suppress the first residual-vibration mode. The resulting tip vibration is plotted in Figure 3(b).
Comparing Figure 3(a) and 3(b), we see that, in spite of the presence of the second and
higher residual vibration modes, the residual tip vibration is substantially reduced by the two-
step input shaping. Consequently, the time required for the cantilever tip vibration to reduce
below a tolerable level will be shortened by use of a two-step input-shaping scheme in the
form of (17).

3.3. ZVD shapers

Next let us discuss the potential advantages of using a slightly more sophisticated input-shap-
ing scheme. Specifically, consider first an undamped cantilever whose base movement is com-
pleted in three steps:

y0(t)= 1
4
{H(t)+2H(t − τ)+H(t −2τ)}, (21)

for which the modal responses for t >τ can be constructed from (13), yielding

an(t)=νnβ
−4
n

{
1− 1

2
(1+ cosωnτ) cosωn(t − τ)

}
(n=1,2,3, . . . ). (22)

We shall explain later how the three-step input-shaping scheme (21) can be deduced. How-
ever, as for the modal responses (15) to the two-step input shaping, residual vibration of the
n-th mode is completely suppressed when any one of the ZV conditions (16) is met. Physically,
under the ZV conditions residual vibration of the n-th mode excited by the first and the third
partial steps in (21) would interact constructively, and then jointly annihilate that excited by
the second partial step. However, for general values of the time-lag parameter τ , the residual-
vibration reduction factor for the n-th mode due to the three-step shaping scheme (21) is

Rn,3step(τ ;b=0)= 1
2
(1+ cosωnτ),

in contrast with the two-step reduction factor (see Equation (19))

Rn,2step(τ ;b=0)=| cos(ωnτ/2)|
due to the input-shaping scheme (14).

In Figure 4 we compare the residual-vibration reduction factors Rn,3step and Rn,2step. It
is seen that the three-step reduction factor has zero slope when it becomes zero under the
ZV condition τ = τn/2 = π/ωn, while the two-step reduction factor has nonzero slope there.
(As a matter of fact, Rn,2step reaches its maximum slope there instead). For this reason, the
three-step input-shaping scheme (21) is referred to as the ZVD shaper by Singhose [5]. From
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Figure 4. Comparison of the residual vibration reduction factor for the n-th mode due to the three-step input-shap-
ing scheme (21) with that due to the two-step input-shaping scheme (14).

a practical perspective, it would be somewhat difficult to fine-tune the time-lag parameter τ to
satisfy the ZV condition τ =τn/2=π/ωn exactly. So, the fact that the three-step input-shaping
scheme (21) has a wider window of small vibration amplitude near the ZV time lag τ =π/ωn

than the two-step scheme (14), clearly is an advantageous feature, for it renders the effective-
ness of residual-vibration reduction less sensitive to the value of the time-lag parameter τ . Of
course, the trade-off here is the longer time required for the cantilever base to reach its des-
tination position in the three-step scheme than that in the two-step scheme. However, as will
be discussed below, the increase in the overall task time typically is much shorter than the
settling time of the system, and therefore is relatively insignificant.

Having seen the advantage of the ZVD input shaper over the ZV shaper, we now easily
understand how the ZVD shaper (21) can be deduced. In fact, it is straightforward to cal-
culate the resulting vibration amplitude of a three-step input in which the three partial steps
are equally spaced in time by τ as in (21), but each has an arbitrary magnitude. Of course,
by scaling the three partial-step magnitudes must add up to unity. Furthermore, as our objec-
tive is to reduce the sensitivity of the residual-vibration amplitude with respect to timing error
under ZV conditions, the derivative of the vibration amplitude with respect to the time spac-
ing τ therefore is set to zero at the ZV values of τ . With these constraints, one then readily
deduces the ZVD shaper (21).

For a damped cantilever, to take into account the temporal attenuation of the modal
responses excited by earlier partial steps, the three-step input-shaping scheme (21) is modified
to be

y0(t)= 1
2

(
1+ cosh

bτ

2µ

)−1 {
ebτ/2µH(t)+2H(t − τ)+ e−bτ/2µH(t −2τ)

}
. (23)

Note that the dimensionless strokes of the three partial steps add up to unity, as required
by the normalization scheme here. Meanwhile, the modal responses for t >τ are constructed
from the damped unit-step responses (12) to be

an(t)=νnβ
−4
n

{
1− ebτ/2µ(1+ cosω′

nτ )

1+ cosh(bτ/2µ)
e−bt/2µ

×
[

cosω′
n(t − τ)+ b

2µω′
n

sin ω′
n(t − τ)

]}
(n=1,2,3, . . . ). (24)
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Figure 5. Residual tip vibration of a cantilever excited by three-step base movement. (a) Without damping; the base
movement is described by (21) with τ =1/2. (b) With damping coefficient b=0·05; the base movement is described
by (23) with τ = τ ′

1/2. Solid curves: temporal variations of the tip position; dot-dashed curves: contributions of the
first vibration mode.

Hence, comparing (24) with (12), we find that with damping the residual-vibration reduc-
tion factor for the n-th mode due to the three-step shaping scheme (23) is

Rn,3step(τ ;b)= ebτ/2µ

1+ cosh(bτ/2µ)
(1+ cosω′

nτ ), (25)

in contrast with the two-step reduction factor defined in (19). Of course, the reduction fac-
tors reduce to the undamped results given above when the damping coefficient b→0. So, as
damping effects typically are quite weak in elastic structures requiring the use of input shap-
ing, Figure 4 still is an appropriate comparison between the residual-vibration reduction fac-
tors Rn,3step and Rn,2step. (The damping effects are included in the above general calculations,
however, so that the results are expected to be useful for systems having stronger damping as
well.) We thus see that both the three-step and two-step reduction factors vanish when one of
the ZV conditions (20) for a damped structure is satisfied. However, the three-step (or ZVD)
shaper is superior to the two-step (or ZV) shaper in the sense that its effectiveness of resid-
ual-vibration reduction is less sensitive to the value of the time-lag parameter τ . Of course,
we reiterate here that the trade-off is the slightly longer time required for the cantilever base
to reach its destination position when the ZVD shaper is employed.

To demonstrate the effectiveness of the ZVD shaper in residual-vibration reduction, the tip
motion of a cantilever is calculated by summing up the modal contributions. In Figure 5(a)
we plot the result for an undamped cantilever whose base movement is described by (21) with
τ =1/2 to suppress the first residual-vibration mode. Meanwhile, the result for a damped can-
tilever (taking b=0·05) whose base movement is described by (23) with τ = τ ′

1/2 to suppress
the first residual-vibration mode is shown in Figure 5(b). Comparing Figures 5(a) and 2(b),
we see that the residual tip vibration caused by the ZVD shaper appears to be slightly smaller
in amplitude than that excited by the ZV shaper. Meanwhile, comparison of Figures 5(b) with
3(b) shows that the same is true. This can be understood on physical grounds, since smooth-
ing out the base movement by splitting it into more steps generally would also reduce the
spectral amplitudes of the second and higher vibration modes, which constitute the residual
vibration in both the ZV and the ZVD cases.

Moreover, note that in the damped cases, Figures 5(b) and 3(b), the time required for the
cantilever tip to settle down is mainly controlled by the decay rates of the residual vibra-
tion modes, which, in turn, are determined by the damping coefficient b. Therefore, when the
damping effects are relatively weak, as is true in all the cases discussed here, the extra time
required for the cantilever base to reach its destination position when a ZVD shaper is used
would be quite insignificant compared with the total time required for the tip vibration to
reduce below an admissible level. In other words, while both the ZVD and ZV input shapers
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Figure 6. Experimental setup.

suppress the first residual-vibration mode, the overall time required for the cantilever tip to
settle down is still somewhat shorter when the ZVD shaper is used. It can then be argued
that, compared with the ZV shaper, the ZVD shaper not only is more tolerant of parameter
fine-tuning errors in suppressing the main vibration mode, but also reduces the amplitudes of
the surviving modes to a greater extent. So, the ZVD input-shaping scheme generally is pref-
erable in practice.

4. Experiments

Here we present some experimental results that demonstrate the effectiveness in residual vibra-
tion reduction of the various input-shaping schemes discussed above. For a more detailed dis-
cussion of the experimental procedures and results, the reader is referred to the experimentally
oriented paper of Chen et al. [12].

As shown in Figure 6, the test structure is a stainless-steel beam having a length of
155 mm, width of 13·6 mm, and thickness of 1·2 mm. One end of the beam (the tip of the
cantilever) is free to vibrate, while the other end (the base of the cantilever) is clamped on
a piezoelectric actuator (Piezo Jena PA100-12, bandwidth ∼100 Hz). The base movement of
the cantilever is then controlled by digital signals generated by a Pentium III 933 MHz per-
sonal computer. A capacitive displacement sensor (MTI ASP50, having a dynamic range of
1·25 mm and bandwidth of 5 KHz) is used to pick up the displacement of the flexural can-
tilever. Also, the whole system is set on an optical table (DVIO-R-2412M-200t) to isolate it
from undesirable environmental vibration.

When a unit-step input is applied to displace the cantilever base by a stroke of about
33 µm, the induced tip vibration initially has a peak-to-peak amplitude of about 83 µm
(which is less than three times the base movement). The amplitude is then slowly attenuated,
and the dimensionless damping coefficient is estimated to be b≈0·025. Note that here the ini-
tial vibration amplitude appears to be much less than that shown in Figure 3(a), where the
initial peak-to-peak amplitude is about six times the base displacement. To understand this,
note that it takes a finite rise time for a real piezoelectric actuator to execute a ‘step input,’ in
contrast with the zero rise time of the mathematical fiction of y0 =H(t), and, generally speak-
ing, slowing down the system input command would reduce the excited vibration. In fact, we
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have also calculated the residual-vibration amplitude of a cantilever whose base movement
is given by y0 = [1 − cos(πt/tr )]/2 for 0 ≤ t ≤ tr and y0 = 1 for t > tr , where tr is the (dimen-
sionless) finite time the cantilever base takes to reach its destination [13]. As it turns out, the
agreement between analytical and experimental results is improved as expected. The algebra
involved, however, is somewhat messier than that presented above for a unit-step input, and
thus is not discussed in this paper.

Moreover, as the system damping is relatively weak, here we simply use the ZV and
ZVD input commands, (14) and (21) respectively, for undamped systems. (For small values of
the damping parameter b, the difference between the input commands for systems with and
without damping is negligible. Note also that, since input shaping typically is employed for
lightly damped structures, oftentimes it suffices to use the simpler commands (14) and (21) for
undamped systems, instead of the more general commands (17) and (23) that are expected to
be useful for systems subject to stronger damping effects.) Also, from the experiments, the first
and second vibration modes are found to have natural frequencies of 40 and 250 Hz, respec-
tively, consistent with the theoretical prediction that ω2/ω1 = (β2/β1)

2 = 6·25. The period of
the first vibration mode therefore is T0 =25 ms (recall that T0 is the characteristic time scale
used in the normalization scheme). This result also suggests that a time lag of 12·5 ms (half
the first natural period; i.e., τ =1/2) should be used for both the ZV and ZVD input shapers
(14) and (21) to suppress the first residual-vibration mode.

However, for the purpose of comparing the experimental and theoretical results, in the
experiments we intentionally vary the time lag parameter τ appearing in the input commands
(14) and (21) around 1/2, and estimate the corresponding percentage of the residual tip-
vibration amplitude to that excited by the unit-step input. It should be noted that here the
peak-to-peak vibration amplitude is estimated using the experimental data obtained within a
time interval around a prescribed instant, and the results corresponding to data around 100
and 1250 ms are shown in Figure 7. The theoretical predictions of residual-vibration percent-
ages for a single vibration mode have been shown in Figure 4 above, and are also reproduced
in Figure 7 for comparison.

Generally speaking, the experimental results agree well with the uni-modal theoretical
predictions, except near the low-vibration windows around τ = 1/2. This is in fact easy to
understand on physical grounds, since here the residual vibration actually consists of a large
number of detectable modes, so that even if the first mode is completely suppressed, the over-
all residual-vibration amplitude still is nonzero in general. Note also that, unlike the simple
theoretical model used here, each vibration mode is damped to a different extent, and gener-
ally speaking modes of higher frequencies suffer a large damping. Therefore, at a later instant,
the tip vibration would consist mainly of the first mode, and this is exactly why the agreement
between the experimental results and uni-modal theoretical predictions in Figure 7(b) is better
than that in Figure 7(a).

An additional interesting feature of Figure 7 is that in some cases, particularly when
a longer lag time τ is used for the input commands, the experimental data of vibration
amplitude are smaller than the theoretical predictions based on a mathematically idealized
unit-step input (having a zero rise time). Again, this can be understood as a consequence
of the finite rise time of a real piezoelectric actuator, and the fact that an input command
having a longer characteristic time scale generally has a narrower frequency spectrum, result-
ing in reduced vibration amplitude. (As remarked earlier, close agreement between the analyt-
ical and numerical results can be obtained by use of more realistic cantilever base movements
in the calculation of the vibration amplitude [13].) Nonetheless, the experimental data indicate
that the ZVD shaper not only is more tolerant of parameter fine-tuning errors than the ZV



14 T.-S. Yang et al.

Figure 7. Comparison of experimental and theoretical results at (a) t =4 and (b) t =50 for both the ZV and ZVD
input commands.

shaper in suppressing the main vibration mode, but also reduces the amplitudes of the sur-
viving modes to a greater extent. So, the ZVD input-shaping scheme generally is preferable
in practice.

5. Concluding remarks

Here we have demonstrated the main ideas of various input-shaping schemes for continuous
structures. In particular, a cantilever beam, whose base is to be displaced by a prescribed
distance, is taken to be the model system. Unlike the lumped SDOF models widely used
in previous studies, the beam motion is modeled here by the damped Bernoulli-Euler beam
equation, and systematically decomposed into an infinite number of normal vibration modes.
The system dynamics thus has infinite degrees of freedom.

For the system setup considered in this paper, the modal equations of motion are uncou-
pled, and hence are integrated analytically. On the basis of the analytic expressions for the
modal responses, it is shown that, by completing the cantilever-base movement in a series
of intermediate steps so as to annihilate the dominant vibration modes through destructive
interference, the overall induced vibration of the cantilever can be significantly suppressed.
In particular, the “zero-vibration” (ZV) and ZVD input-shaping schemes previously proposed
for discrete systems are adapted and applied to the continuous beam here. Meanwhile, since
input shaping typically is employed for lightly damped structures, it usually suffices to use the
simpler commands (14) and (21) for undamped systems, instead of the more general com-
mands (17) and (23) that are expected to be useful for systems subject to stronger damping
effects.

Comparison of the performances of the ZV and ZVD input-shaping schemes indicates that
the ZVD shaper not only is more tolerant of parameter fine-tuning errors than the ZV shaper
in suppressing the main vibration mode, but also reduces the amplitudes of the surviving
modes to a greater extent. So, the ZVD input-shaping scheme is preferable in practice, and
this conclusion is also supported by experimental results.

In closing, we mention that, if in some situations it is desirable to suppress two dominant
vibration modes simultaneously, one may incorporate two time lags into the input command
to trigger destructive interference of two vibration modes at once. As a specific example, sup-
pose that the first and second modes are to be suppressed, both in a ZVD manner. Then the
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input command for an undamped system should be

H(t)= 1
4

{
1
4
H(t)+ 1

2
H(t − τ1/2)+ 1

4
H(t − τ1)

}

+1
2

{
1
4
H(t − τ2/2)+ 1

2
H(t − τ1/2− τ2/2)+ 1

4
H(t − τ1 − τ2/2)

}

+1
4

{
1
4
H(t − τ2)+ 1

2
H(t − τ1/2− τ2)+ 1

4
H(t − τ1 − τ2)

}
.

It has been demonstrated by Lee [13] that the above input command not only reduces the
residual vibration amplitude to a greater extent than single-mode input-shaping commands
do, but also is quite insensitive to timing errors. Of course, by the same token it is also pos-
sible to use an even more complicated input command to suppress three or more vibration
modes simultaneously, provided that the gain in the effectiveness of residual vibration reduc-
tion justifies the added complexity of such input commands.
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